Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Adv Mater ; 36(1): e2305937, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37689973

RESUMO

Oral delivery, while a highly desirable form of nanoparticle-drug administration, is limited by challenges associated with overcoming several biological barriers. Here, the authors study how fluorescent and poly(ethylene glycol)-coated (PEGylated) core-shell silica nanoparticles sized 5 to 50 nm interact with major barriers including intestinal mucus, intestinal epithelium, and stomach acid. From imaging fluorescence correlation spectroscopy studies using quasi-total internal reflection fluorescence microscopy, diffusion of nanoparticles through highly scattering mucus is progressively hindered above a critical hydrodynamic size around 20 nm. By studying Caco-2 cell monolayers mimicking the intestinal epithelia, it is observed that ultrasmall nanoparticles below 10 nm diameter (Cornell prime dots, [C' dots]) show permeabilities correlated with high absorption in humans from primarily enhanced passive passage through tight junctions. Particles above 20 nm diameter exclusively show active transport through cells. After establishing C' dot stability in artificial gastric juice, in vivo oral gavage experiments in mice demonstrate successful passage through the body followed by renal clearance without protein corona formation. Results suggest C' dots as viable candidates for oral administration to patients with a proven pathway towards clinical translation and may generate renewed interest in examining silica as a food additive and its effects on nutrition and health.


Assuntos
Portadores de Fármacos , Nanopartículas , Humanos , Ratos , Camundongos , Animais , Portadores de Fármacos/química , Células CACO-2 , Ratos Sprague-Dawley , Dióxido de Silício/química , Nanopartículas/química
2.
Nature ; 562(7726): E7, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991798

RESUMO

Change history: In Fig. 3b of this Letter, the labels for the outer (11.8 nm) and inner (7.4 nm) diameters of the structure were inadvertently omitted. Fig. 3 has been corrected online.

3.
Nature ; 558(7711): 577-580, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925942

RESUMO

Nanometre-sized objects with highly symmetrical, cage-like polyhedral shapes, often with icosahedral symmetry, have recently been assembled from DNA1-3, RNA 4 or proteins5,6 for applications in biology and medicine. These achievements relied on advances in the development of programmable self-assembling biological materials7-10, and on rapidly developing techniques for generating three-dimensional (3D) reconstructions from cryo-electron microscopy images of single particles, which provide high-resolution structural characterization of biological complexes11-13. Such single-particle 3D reconstruction approaches have not yet been successfully applied to the identification of synthetic inorganic nanomaterials with highly symmetrical cage-like shapes. Here, however, using a combination of cryo-electron microscopy and single-particle 3D reconstruction, we suggest the existence of isolated ultrasmall (less than 10 nm) silica cages ('silicages') with dodecahedral structure. We propose that such highly symmetrical, self-assembled cages form through the arrangement of primary silica clusters in aqueous solutions on the surface of oppositely charged surfactant micelles. This discovery paves the way for nanoscale cages made from silica and other inorganic materials to be used as building blocks for a wide range of advanced functional-materials applications.


Assuntos
Micelas , Dióxido de Silício/química , Dióxido de Silício/síntese química , Tensoativos/química , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão
4.
Nano Lett ; 18(2): 1305-1310, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29293346

RESUMO

Silica chemistry provides pathways to uniquely tunable nanoparticle platforms for biological imaging. It has been a long-standing problem to synthesize fluorescent silica nanoparticles (SNPs) in batch reactions with high and low fluorescence intensity levels for reliable use as an intensity barcode, which would greatly increase the number of molecular species that could be tagged intracellularly and simultaneously observed in conventional fluorescence microscopy. Here, employing an amino-acid catalyzed growth, highly fluorescent SNP probes were synthesized with sizes <40 nm and well-separated intensity distributions, as mapped by single-particle imaging techniques. A seeded growth approach was used to minimize the rate of secondary particle formation. Organic fluorescent dye affinity for the SNP during shell growth was tuned using specifics of the organosilane linker chemistry. This work highlights design considerations in the development of fluorescent probes with well-separated intensity distributions synthesized in batch reactions for single-particle imaging and sensing applications, where heterogeneities across the nanoparticle ensemble are critical factors in probe performance.


Assuntos
Corantes Fluorescentes/química , Nanopartículas/química , Nanotecnologia/métodos , Dióxido de Silício/química , Corantes Fluorescentes/análise , Microscopia de Fluorescência/métodos , Nanopartículas/análise , Imagem Óptica/métodos , Dióxido de Silício/análise
5.
Nat Commun ; 8(1): 252, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811480

RESUMO

Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growth trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.Probing the growth pathways of quasicrystalline materials, where tiling units arrange with local but no long-range order, remains challenging. Here, the authors demonstrate that dodecagonal tiling of mesoporous silica nanoparticles occurs via irreversible packing of micelles with non-uniform size distribution.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...